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where W i and Y i are incoming Wilson lines (see [FS1]). Note that we only write explicitly
the color and spin indices of the partons which emerge from the hard scattering. There
are many implicit color and spin indices in the states hXj| and hXs|. These colors and
spins are important when computing scattering amplitudes, but are usually summed over in
computing resummed distributions.

11.3 QCD factorization formula

In summary, a general factorization formula in QCD can be written as
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where the ± indexes the helicities. The li indices are contracted within the soft Wilson line
matrix element, while the hi and ai indices contract with the colors of the jets.

12 Splitting functions and soft currents

One application of factorization is that it can provide gauge-invariant and regulator-independent
definitions of the collinear-sensitive or soft-sensitive parts of scattering amplitudes. Such def-
initions may be useful in perturbative QCD calculations if they help simplify or clarify the
structure of the infrared divergences. We therefore consider the soft and collinear limits
of our formulas separately, deriving definitions of splitting functions and soft currents and
thereby proving their universality.

12.1 Splitting Functions

Suppose we have a state hX0| = hX0

1

· · ·X0

N ;X
0

s | containing soft and collinear particles and
a matrix element M

0

for producing that state. We want to know how M
0

is modified into
M by the addition of extra collinear particles to the j-collinear sector, turning hX0

j | into
hXj|, while leaving the net momenta in the j sector unmodified at leading power P µ

j
⇠= P 0µ

j .
Let us write the modified matrix element formally as some operator acting on the original
matrix element

M = Sp · M
0

(207)

The distribution of the soft radiation in hX0

s | is completely independent of the splitting. The
only modification from the addition of collinear particles to hX0

j | is in the matrix element
associated with the j-collinear sector.
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soft-collinear double counting by simply not summing over the zero-momentum bin in the
discrete sum over labels. A somewhat simpler formulation of SCET was presented recently
by Freedman and Luke in [56] and connects more directly to the current work, as discussed
in Section 13.

In this paper, we present and prove a factorization formula for amplitudes in gauge
theories, building upon insights from many of the approaches discussed above. All of the
interesting features of this formula can be seen in the simpler case of factorization for matrix
elements of the operator O = 1

(N/2)!
|�|N in scalar QED. There, our formula reads

hX| O |0i ⇠= C(Sij)
hX

1

|�?W
1

|0i
h0|Y †

1

W
1

|0i · · · hXN |W †
N� |0i

h0|W †
NYN |0i hXs|Y †

1

· · ·YN |0i (3)

This formula applies to final states hX| which can be partitioned into N regions of phase
space such that the total momentum P µ

j in each region has an invariant mass which is small
compared to its energy. More explicitly, we demand P 2

j < �2(P 0

j )
2, where P 0

j = Ej is the
energy of the jet, for some number � ⌧ 1 which is used as a power-counting parameter. For
such states, the momentum qµ of any particle has to be either collinear to one of N lightlike
directions, nµ

j , meaning nj · q < �2q0, or soft, meaning q0 < �2P 0

j . Thus we can write for the
final state hX| = hX

1

· · ·XN ;Xs|, where all the particles with momentum collinear to nj are
contained in the jet state hXj| and the particles that are soft are in hXs|. This explains the
states in Eq. (3). The Wilson coe�cient C(Sij) is a function only of the Lorentz-invariant
combinations Sij ⌘ (Pi + Pj)2 ⇠= 2Pi · Pj of jet momenta P µ

j in each direction; it does
not depend at all on the distribution of energy within the jet or on the soft momenta and,
therefore, it does not depend on �. The objects Yj are Wilson lines going from the origin
to infinity in the directions of the jets, and the Wj are Wilson lines in directions tµj only
restricted not to point in a direction close to that of the corresponding jet. We give more
precise definitions of the Wilson lines in Section 2. The symbol ⇠= in Eq. (3) indicates that
any IR-regulated amplitude or IR-safe observable computed with the two sides will agree at
leading power in �.

Eq. (3) implies hard-collinear factorization (Eq. (1)) and hard-soft factorization (Eq. (2))
as special cases. For example, if a two-body final state hX| is modified by adding a soft
photon of momentum qµ, then one can calculate the e↵ect of this extra emission by taking
the ratio of the right-hand side of Eq. (3) with and without the emission. Most of the terms
drop out of the product, leaving

Jµ
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h✏µ(p); a|Y †
1

Y
2

|0i
h0|Y †

1

Y
2

|0i = gsT
a

✓
pµ
2

p
2

· q � pµ
1

p
1

· q
◆
+O(g3s) (4)

We will give general operator definitions for the splitting amplitude, Sp(p
1

, · · · pN), and the
soft current, J, and discuss their universality in Section 12 after we present the generalization
of Eq. (3) to QCD in Section 11 (see Eq. (206)).

Eq. (3) was derived at tree-level in [55], a paper we will refer to often and hereafter as
[FS1]. At tree-level, the Wilson coe�cient and the vacuum matrix elements in the denomi-
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•  Two different amplitudes in QCD are equal at leading power in  
•  We prove this rigorously to all orders in perturbation theory 

pi · pj
Q2



Perturbative QCD 
•  Why is perturbative QCD useful at all? 

June 19, 2014 Matthew Schwartz 

Asymptotic freedom 
•  αs is small at high energy 
•  Perturbation theory works 

� = µ
d

dµ
↵s < 0

Determined by  
    UV properties of QCD 

Factorization 

dσ =[PDFs]  
       x [hard process]  
          x [soft/collinear radiation] 
              x [hadronization] 

Universal 
Perturbative 

(Re)summable 

Small 

Determined by 
    IR properties of QCD 



1.   Non-perturbative effects 
•  To show factorization up to       or 
•  No access to non-perturbative scales in perturbation theory 

 
2.  Perturbative effects 
 
 
 
 
 
3.  Hard even to formulate theorem 

Why is proving factorization so hard? 
June 19, 2014 Matthew Schwartz 

•  Infrared singularities (pinch surfaces) complicated  
•  Gauge dependence subtle 
•  Off-shell modes (Glauber gluons) 

mP

Q
⇤QCD

Q

•  Precisely what is supposed to hold? 
•  Gauge-invariant and regulator-independent formulation? 



Historically, four approaches 

June 19, 2014 Matthew Schwartz 

1. OPE approach 

2. Pinch surface approach 

3. Amplitude approach 
4. Effective field theory 
approach 
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!Fig. 32.1
As energy is increased, e−p+ scattering goes from elastic to slightly inelastic, with e−p+π0

in the final state, to deeply inelastic, where the proton breaks apart completely.

In the lab frame, the kinematics are shown in Figure 32.1. We define E and E′ as the
energies of the incoming and outgoing electron. We also define θ as the angle between "k
and "k′, so θ = 0 is forward scattering. The cross section can be written as

(
dσ

dΩ dE′

)

lab
=

α2
e

4πmpq4
E′

E
LµνWµν , (32.10)

where Lµν is the leptonic tensor, which encodes polarization information for the elec-
tron or, equivalently, the off-shell photon. We already used a parametrization like this in
Chapter 20 while discussing IR divergences. There the e+e− → µ+µ−(+γ) cross section
simplified using the same lepton tensor. For unpolarized scattering, the lepton tensor is

Lµν =
1

2
Tr
[
/k′γµ/kγν

]
= 2(k′µkν + k′νkµ − k · k′gµν) , (32.11)

where k and k′ are the electron’s initial and final momentum. The factor of 1
2 comes from

averaging over the initial electron’s spin. Note that Lµν = Lνµ.
The hadronic tensorWµν includes an integral over all the phase space for all final state

particles (as didXµν in Eq. (20.30)). It gives the rate for γ"p+ → anything:

e2εµε
"
νW

µν =
1

2

∑

X,spins

∫
dΠX(2π)

4δ4(q + P − pX)
∣∣M

(
γ"p+ → X

)∣∣2 , (32.12)

where εµ is the polarization of the off-shell photon. Since final states are integrated over,
Wµν can depend on Pµ and qµ only. In unpolarized scattering, it must be symmetric,
Wµν = W νµ. It also should satisfy qµWµν = 0 by the Ward identity (see Chapter 14),
since the interaction is only through a photon. Thus, the most general parametrization is1

Wµν = W1

(
−gµν + qµqν

q2

)
+W2

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
. (32.13)

The Lorentz scalars on whichW1 andW2 can depend are P 2 = m2
p, q2 and P · q. Natural

variables to use are Q ≡
√
−q2 > 0, which is the energy scale of the collision, and

ν ≡ P · q
mp

= (E − E′)lab , (32.14)

1 A word of caution: there are a number of different conventions for the normalization of W1 and W2 in the
literature. Ours is convenient for the Q/mp → ∞ limit.
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We next simplify this using

〈P |Jµ(0)|X〉 = 〈P |e−iP̂·xJµ(x)e
iP̂·x|X〉 = e−i(P−pX)·x〈P |Jµ(x)|X〉, (32.77)

where P̂ is the momentum operator that generates translations. This gives

Wµν(ω, Q) =
∑

X

∫
dΠX

∫
d4x eiq·x〈P |Jµ(x)|X〉〈X|Jν(0)|P 〉

=

∫
d4x eiq·x〈P |Jµ(x)Jν(0)|P 〉. (32.78)

Having performed the sum over |X〉, we no longer have to think explicitly about what the
final states are. Now we can focus on the product of two current operators.
We would now like to use the Q→∞ limit (at fixed ω) to expand the operator product

Jµ(x)Jν(0) around xµ = 0. Unfortunately, there are two problems with such an expansion.
The first problem is that, while we know how to calculate matrix elements of time-ordered
products of fields at different points using Feynman rules, we do not know how to calculate
products that are not time ordered. The second problem is that large Q2 implies xµxµ →
0 (see Problem 32.7), but it does not imply that xµ → 0. In fact, the currents can be
separated very far on the lightcone at largeQ2. In momentum space, the problem is that we
would like to Taylor expand in Q−2. Since ω = 2P ·q

Q2 this limit implies ω → 0. However,
kinematically P · q > 1

2Q
2, implying ω > 1 (i.e. Bjorken x < 1), so a naive large

Q2 expansion will take us out of the physical region. To solve this problem, we need to
rearrange things so we can Taylor expand around ω = 0.
To solve the first problem, we use the optical theorem to turn the product of currents into

a time-ordered product. The optical theorem says that the total rate for γ"p+ → X is given
by the imaginary part of the forward scattering rate γ"p+ → γ"p+. Using Eqs. (32.12)
and (24.11), we can write

Wµν = 2ImTµν , (32.79)

where
e2εµε

"
νT

µν(ω, Q) = M(γ"p→ γ"p). (32.80)

Tµν is called the forward Compton amplitude. It is a forward amplitude since the (off-
shell) photon and proton have the same momentum in the initial and final states. In terms
of currents, we can write Tµν as

Tµν(ω, Q) = i

∫
d4x eiq·x〈P |T{Jµ(x)Jν(0)}|P 〉 . (32.81)

We have expressed a matrix element squared Wµν ∼ |M(γ"p → X)|2 ∼ |〈T{J}〉|2 as
the imaginary part of a matrix element Tµν ∼ M(γ"p→ γ"p) ∼ 〈T{JJ}〉.
It is conventional to expand Tµν in terms of its own structure functions, as in (32.13),

with a slightly different normalization:

Tµν(ω, Q) = T1

(
−gµν + qµqν

q2

)
+

T2

P · q

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
. (32.82)

The DIS structure functions are then W1 = 2ImT1 and W2 = 4Im 1
ωQ2T2. It is also

conventional to use the form factors F1,2 in Eq. (32.26) for the factorization analysis in

Deep inelastic scattering 

Photon momentum 

•  Use OPE around ω=0 to expand at large Q2 
•  Physical region has ω>1  
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ω

Re(ω)

Im(ω)

−1 1

ω

Re(ω)

Im(ω)

−1 1

!Fig. 32.4
The hadronic tensorWµν is determined by regions of the forward Compton tensor Tµν

along the contours on the left. Integrating over all ω lets us deform the contour and justifies
using an operator product expansion derived around ω = 0.

The current–current matrix element in a quark state is the same as the forward scat-
tering matrix element for Compton scattering γ!q → γ!q with the photon off-shell
and photon polarizations removed. At leading order in perturbation theory, the result is
then

i

∫
d4x eiqx〈p|T{Jµ(x)Jν(0)}|p〉

= −ū (p)
γµ(/p+ /q)γν

(p+ q)2 + iε
u(p)− ū(p)

γν(/p− /q)γµ

(p− q)2 + iε
u(p). (32.85)

Note that this is a forward scattering amplitude, so the quark has the same momentum pµ

in both the initial and the final state.
Let us first concentrate on the p + q term. To calculate the OPE coefficients, at leading

order, we expand the denominator in Eq. (32.85) for Q2 % p2. (This is the equivalent of
expanding 1

p2−m2
W
for m2

W % p2 to generate the 4-Fermi theory.) The expansion of the
denominator gives

1

(p+ q)2
=

1

−Q2 + 2q · p+ p2
= − 1

Q2

∞∑

n=0

(
2p · q + p2

Q2

)n
. (32.86)

So,

i

∫
d4x eiqx〈p|T{Jµ(x)Jν(0)}|p〉 = 1

Q2
ū(p)γµ(/p+/q)γ

νu(p)
∞∑

n=0

(
2p · q + p2

Q2

)n
+· · ·,

(32.87)
with the · · · representing the second term in Eq. (32.85).
Whenever we have such a momentum-space expansion, we can read off the Wilson

coefficients and operators in the OPE. For the OPE to make sense, all factors of pµ should
come from factors of i∂µ in the operators evaluated on external states (which depend on
pµ). On the other hand, all dependence on the short-distance scale qµ (and Q2 = −q2)
must be in the Wilson coefficients. For example, a term

(
p2

Q2

)n
in such an expansion would

analytic 

analytic analytic 

analytic 

•  OPE is possible because we can analytically continue 
•  We know analytic structure because 

1.  Inclusive over final states 
2.  Analytic structure of two-point function                 known exactly 

•  Analytic structure for more complicated processes not known exactly 
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conventional to use the form factors F1,2 in Eq. (32.26) for the factorization analysis in
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Fig. 5.6. Eikonal rotation matrix next to a collinear three-gluon vertex. The "'soft" q~' and q~' are 
neglected in the expression for the vertex. (The 8 here signifies that the octet SU(3) representation 

matrices appear on the eikonal line.) 

Thus  we can adopt  the conven t ion  that  k " + q ~ + q ~  is r ep laced  by k "  at the 
t h ree -g luon  ver tex  in the " s o f t "  approx imat ion .  In coord ina te  space with the ver tex  
at x ", this amount s  to saying that  the O/Ox" at the ver tex  does  not  d i f ferent ia te  the 
e ikonal  ro ta t ion  mat r ix  U(x ; A )  that  appears  at the end of the col l inear  gluon line. 

5.5. A BOTANICAL CONSTRUCTION 

Cons ide r  a cut F e y n m a n  d iagram G cont r ibut ing  to (OldJ(k')a+(P)a(P)× 
T{A(q)d~(k)}[O), as i l lustrated in fig. 5.7. W h e n  the gluon A(q)  is coupled  to the 

21 I 2 
k I ~ ~ ~ k ~ 

I x . /  q 

I 

Fig. 5.7. A two-tulip garden. 

History

404 J.C. Collins, D.E. Soper / Back-to-back jets 

S \ A_.~" ,¢~.;_B 

A A 
d 

Fig. 5.10. Adding tulip B to the garden produces a cancellation. 

the  f inger  of TA ente rs  S. T h e r e  the  b o u n d a r y  of TB fol lows the  b o u n d a r y  of S. Of  
course  it is s u p p o s e d  that  the  f inger of which we have  b e e n  speak ing  has no 
subfingers  in te r io r  to it; if it does ,  we app ly  the  a r g u m e n t  to the  smal les t  subfinger .  
If the  ga rden  conta ins  severa l  tul ip fingers ex t end ing  f rom S into J, t he re  is an 
i n d e p e n d e n t  cance l l a t ion  for  each  finger. T h e r e  are  also ( i ndependen t )  cance l la t ions  
when  the  ex te r io r  of a tul ip  has a f inger  tha t  ex tends  f rom J into S. T h e  cance l la t ions  
for  a t h r ee  tu l ip  ga rden  of r e a s o n a b l y  c o m p l i c a t e d  g e o m e t r y  are  i l lus t ra ted  in fig. 
5.11. 

This  a r g u m e n t  shows tha t  G R - -  0 when  soft and  co l l inear  in teg ra t ion  regions  are  
t a k e n  into account .  W e  now ex tend  this a r g u m e n t  to cover  u l t rav io le t  m o m e n t a ,  
p r o c e e d i n g  in two stages.  In the  first s tage,  imag ine  tha t  u l t r av io le t  l oop  m o m e n t a  
in ve r tex  and se l f - ene rgy  subgraphs  are  a l lowed  p r o v i d e d  tha t  no soft g luon f rom 
the u p p e r  soft subg raph  S in fig. 4 .3a  ends  on an u l t rav io le t  l ine in J. U p o n  r e r e a d i n g  
the  or ig inal  a r g u m e n t  for  G R - - 0 ,  one  d iscovers  that  no change  in the  a r g u m e n t  is 
r e q u i r e d  to cover  this case. 

I 

2 
:5 

Fig. 5.11. Cancellations for a complicated garden. The shaded area is the soft subgraph. The solid lines 
are tulip boundaries. Addition of tulips with new boundary portions along one or more of the dashed 

or dotted lines produces cancellations. Collins & Soper, 1981 

Collins, Soper, Sterman: 
 pinch surfaces factorize 



Figure 21: Typical leading regions for annihilation processes. (a) physi-
cal gauge. (b) covariant gauge. The most general leading region has the
possibility of extra jets beyond the two shown here.
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•  All momenta zero or exactly proportional to some external momentum 
•  Sidesteps soft/collinear overlap region (zero bin) 
•  More work needed to factorize finite-momentum amplitudes 

•  Factorizes hard from jet/soft – does not factorize jet from soft 
•  Do not provide operator definitions 

pµ = 0Soft region: all particles have  

Jet regions: all particles have   

Hard region  
(drawn as points) 

pµi = cip
µ
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Primary goal is practical formulas (e.g. for subtractions): 

Tree-level 

DGLAP splitting functions (1977) 

680 QCD and the parton model

And therefore up to next-to-leading order

Ŵ0 = Ŵ LO
0 +ŴV

0 +ŴR
0 = 4πQ2

i

{[

δ (1− z)− 1

ε

αs

π
Pqq (z)

(
4πµ2

Q2

) ε
2 Γ

(
1− ε

2

)

Γ (1− ε)

]

+
αs

2π
CF

[
(
1 + z2

) [ ln (1− z)

1− z

]

+

− 3

2

[
1

1− z

]

+

− 1 + z2

1− z
ln z + 3 + 2z −

(
9

2
+

1

3
π2

)
δ (1− z)

]}

(32.44)

where

Pqq (z) = CF

[
(
1 + z2

) [ 1

1− z

]

+

+
3

2
δ (1− z)

]

(32.45)

This distribution Pqq (z) is known as a DGLAP splitting function, after Dokshitzer, Gri-
bov, Lipatov, Altarelli and Parisi.
At this point, all the double poles have canceled, but there is still a single 1

ε pole in
the cross section whose residue is proportional to Pqq(z). Having a pole in a parton-level
cross-section is not a problem, as long as it drops out of physical predictions. Focusing on
this pole, we can insert Ŵ0 into Eq. (32.32) to get

W0 (x,Q) = 4π
∑

i

Q2
i

∫ 1

x

dξ

ξ
fi (ξ)

[
δ

(
1− x

ξ

)
− αs

2π
Pqq

(
x

ξ

)(
2

ε
+ ln

µ̃2

Q2

)
+ finite

]

(32.46)
Now, using the definition of plus-functions, we find that the splitting function in Eq. 32.45
satisfies ∫ 1

0
Pqq (z) dz = 0 (32.47)

Thus if we integrateW0(x,Q) over x, to get the total DIS cross section at a given Q, the
1
ε pole exactly vanishes.
At fixed x the 1

ε pole does not cancel andW0(x,Q) is divergent. However, as in many
other examples (cf. Chapter 16), we need to take differences of cross sections to find finite
answers. The difference inW0(x,Q) at the same x but different scales Q and Q0 is

W0(x,Q)−W0(x,Q0) = 4π
∑

i

Q2
i

∫ 1

x

dξ

ξ
fi (ξ)

[
αs

2π
Pqq

(
x

ξ

)
ln

Q2

Q2
0

]
(32.48)

This difference is a finite integral. The finite parts of Eq. (32.44) drop out of such differ-
ences, but the 1

ε pole in the parton-level cross section leads to a physical quantum predic-
tion for the logarithmic Q dependence of the hadronic cross section. (The finite parts of
Eq. (32.44) do show up in differences of structure functions [Altarelli et al., 1979; Sterman,
1994]).
Why should we have to calculate differences? Shouldn’t W0 (x,Q) be observable and

hence finite without any new renormalization, since QCD is renormalizable? There are two
answers. First, if we did the calculation in full QCD, the IR divergence would be cut off
by some physical scale such as a quark mass mq or ΛQCD. Indeed, the same divergence
occurs in Compton scattering in QED, and is cut off by the electron mass. However, this

788 Jets and effective field theory

Keep in mind that there is no restriction on the photon field Aµ appearing in the soft
Wilson line; it is the same as a photon field in full QED. The only place the soft approxi-
mation is used in the whole derivation above is in saying that the momenta pµi entering the
amplitudeM(pi) are the same before and after the soft photon emission. This is equivalent
to the Wilson line Y (x) and the field ψ(x) being evaluated at the same space-time point.
In other words, the soft emissions leave the collinear momentum precisely unchanged, to
leading power. The position-space language is very natural for soft emissions: a particle
just moves along its classical trajectory, casually emitting soft photons. In fact, we already
showed in Section 33.6.1 that Wilson lines naturally describe the semi-classical limit of a
propagating charged particle.

36.3.3 Soft gluon emission

The above arguments for QED generalize in a straightforward way to QCD. We start with
the matrix element for the process just involving quarks:

〈p1 · · · |ψ̄1(x) · · ·ψn(x)| · · · pn〉 = iMeix(p1+···+pn). (36.33)

You can think of the subscript on the quark fields as a flavor index. We include to make it
clear which field corresponds to which state.
To see what happens when a soft gluon is emitted from a quark, we write M =

ūi(p)M̃i. Abusing notation slightly, i now denotes the quark color index, and we leave
the momentum label implicit. The kinematical factors are the same for emitting a gluon as
for emitting a photon, so all that changes is a group factor T a

ij gets added:

ūiM̃i = pi −→
pi + k

pi

k

= −gsūiT
a
ij
p · ε
p · kM̃j(p).

(36.34)
The eikonal factor is now −gT a

ij
p·ε
p·k . As in QED, this factor is independent of the spin of

the colored particle.
Now consider a final state with two soft gluons, one with momentum k1, polarization

ε1 and color a, and the other with k2, ε2 and b. If these gluons both come from the same
quark, there are three graphs:

k2

k1

pi

A

+
k2

k1

pi

B

+
k2

k1

pi

C
(36.35)

Graphs A and B modify the matrix element as

ūiM̃i →(−gs)2 ūi

[
T a
ijT

b
jk

p · ε1
p · k1

p · ε2
p ·(k1 + k2)

+ T b
ijT

a
jk

p · ε1
p ·(k1 + k2)

p · ε2
p · k2

]
M̃k.

(36.36)

In the Abelian case, the two-photon emission amplitude simplified with the eikonal identity
to a form that was manifestly equal to what came out of the expansion of a Wilson line.

M ! M⇥ Pab

•  Leading order splitting functions universal  
      (process independent) 
•  Splitting functions for PDF evolution defined to all orders 
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With generic-r reference vectors, the first set of graphs are power-suppressed compared to
the second set of graphs. Indeed, graphs which contribute at leading power must have a

factor of
1

q · p
1

⇠ ��2, as does G(12),a. The graphs with the emission coming from the p
2

leg

have instead
1

q · p
2

⇠ �0 factors which are subleading power. The fact that non-self-collinear

emissions are power suppressed in generic-r was discussed elaborately in [FS1]. This result
holds at loop level as well, simply because in generic-r a non-self-collinear emission can
never have an enhanced propagator. We will come back to the general discussion in the next
section and focus, for now, on the one-loop example at hand. The result is that we only
need to consider the graphs in Eq. (51).

Note that the power suppression in � holds whether or not the graphs are IR finite.
Although power-counting something infinite may seem bizarre, one should keep in mind
that the loop IR-divergences are always ultimately canceled by phase space integrals in
computing infrared-safe observables. Thus, power suppressed infrared divergences translate
to power-suppressed finite contributions, which is why we can drop them.

The remaining graphs contributing to the right-hand side of Eq. (46) come from the
soft-Wilson lines at 1-loop multiplying the tree-level real emission
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where G(12)
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comes from the calculation of the 1-loop Wilson coe�cient in the previous
section.
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of the soft limits of G(12),a or G(12),b at leading power, the G
(12)

not-soft-sens.

term reproduces the

14

The remaining graphs have a loop connecting the two legs and the emission coming o↵
either the p

2

leg
p1

p2

q
,

p1

p2

q

,

p1

p2

q (50)

or the p
1

-leg

G(12),a ⌘

p1

p2

q

" k , G(12),b ⌘ " k

p1

p2

q

, G(12),c ⌘

p1

p2

q

(51)

With generic-r reference vectors, the first set of graphs are power-suppressed compared to
the second set of graphs. Indeed, graphs which contribute at leading power must have a

factor of
1

q · p
1

⇠ ��2, as does G(12),a. The graphs with the emission coming from the p
2

leg

have instead
1

q · p
2

⇠ �0 factors which are subleading power. The fact that non-self-collinear

emissions are power suppressed in generic-r was discussed elaborately in [FS1]. This result
holds at loop level as well, simply because in generic-r a non-self-collinear emission can
never have an enhanced propagator. We will come back to the general discussion in the next
section and focus, for now, on the one-loop example at hand. The result is that we only
need to consider the graphs in Eq. (51).

Note that the power suppression in � holds whether or not the graphs are IR finite.
Although power-counting something infinite may seem bizarre, one should keep in mind
that the loop IR-divergences are always ultimately canceled by phase space integrals in
computing infrared-safe observables. Thus, power suppressed infrared divergences translate
to power-suppressed finite contributions, which is why we can drop them.

The remaining graphs contributing to the right-hand side of Eq. (46) come from the
soft-Wilson lines at 1-loop multiplying the tree-level real emission

C(S
12

) hp
1

, q|�⇤ |0i h0|Y †
1

Y
2

|0i
h0|Y †

1

|0i h0|Y
2

|0i
one-loop

= hp
1

, q|�⇤ |0i
tree

h
h0|Y †

1

Y
2

|0i+G
(12)

not-soft-sens.

i

(52)

where G(12)

not-soft-sens.

comes from the calculation of the 1-loop Wilson coe�cient in the previous
section.

What we will now show is that the h0|Y †
1

Y
2

|0i term in Eq. (52) reproduces the sum

of the soft limits of G(12),a or G(12),b at leading power, the G
(12)

not-soft-sens.

term reproduces the

14

The remaining graphs have a loop connecting the two legs and the emission coming o↵
either the p

2

leg
p1

p2

q
,

p1

p2

q

,

p1

p2

q (50)

or the p
1

-leg

G(12),a ⌘

p1

p2

q

" k , G(12),b ⌘ " k

p1

p2

q

, G(12),c ⌘

p1

p2

q

(51)

With generic-r reference vectors, the first set of graphs are power-suppressed compared to
the second set of graphs. Indeed, graphs which contribute at leading power must have a

factor of
1

q · p
1

⇠ ��2, as does G(12),a. The graphs with the emission coming from the p
2

leg

have instead
1

q · p
2

⇠ �0 factors which are subleading power. The fact that non-self-collinear

emissions are power suppressed in generic-r was discussed elaborately in [FS1]. This result
holds at loop level as well, simply because in generic-r a non-self-collinear emission can
never have an enhanced propagator. We will come back to the general discussion in the next
section and focus, for now, on the one-loop example at hand. The result is that we only
need to consider the graphs in Eq. (51).

Note that the power suppression in � holds whether or not the graphs are IR finite.
Although power-counting something infinite may seem bizarre, one should keep in mind
that the loop IR-divergences are always ultimately canceled by phase space integrals in
computing infrared-safe observables. Thus, power suppressed infrared divergences translate
to power-suppressed finite contributions, which is why we can drop them.

The remaining graphs contributing to the right-hand side of Eq. (46) come from the
soft-Wilson lines at 1-loop multiplying the tree-level real emission

C(S
12

) hp
1

, q|�⇤ |0i h0|Y †
1

Y
2

|0i
h0|Y †

1

|0i h0|Y
2

|0i
one-loop

= hp
1

, q|�⇤ |0i
tree

h
h0|Y †

1

Y
2

|0i+G
(12)

not-soft-sens.

i

(52)

where G(12)

not-soft-sens.

comes from the calculation of the 1-loop Wilson coe�cient in the previous
section.

What we will now show is that the h0|Y †
1

Y
2

|0i term in Eq. (52) reproduces the sum

of the soft limits of G(12),a or G(12),b at leading power, the G
(12)

not-soft-sens.

term reproduces the

14

The remaining graphs have a loop connecting the two legs and the emission coming o↵
either the p

2

leg
p1

p2

q
,

p1

p2

q

,

p1

p2

q (50)

or the p
1

-leg

G(12),a ⌘

p1

p2

q

" k , G(12),b ⌘ " k

p1

p2

q

, G(12),c ⌘

p1

p2

q

(51)

With generic-r reference vectors, the first set of graphs are power-suppressed compared to
the second set of graphs. Indeed, graphs which contribute at leading power must have a

factor of
1

q · p
1

⇠ ��2, as does G(12),a. The graphs with the emission coming from the p
2

leg

have instead
1

q · p
2

⇠ �0 factors which are subleading power. The fact that non-self-collinear

emissions are power suppressed in generic-r was discussed elaborately in [FS1]. This result
holds at loop level as well, simply because in generic-r a non-self-collinear emission can
never have an enhanced propagator. We will come back to the general discussion in the next
section and focus, for now, on the one-loop example at hand. The result is that we only
need to consider the graphs in Eq. (51).

Note that the power suppression in � holds whether or not the graphs are IR finite.
Although power-counting something infinite may seem bizarre, one should keep in mind
that the loop IR-divergences are always ultimately canceled by phase space integrals in
computing infrared-safe observables. Thus, power suppressed infrared divergences translate
to power-suppressed finite contributions, which is why we can drop them.

The remaining graphs contributing to the right-hand side of Eq. (46) come from the
soft-Wilson lines at 1-loop multiplying the tree-level real emission

C(S
12

) hp
1

, q|�⇤ |0i h0|Y †
1

Y
2

|0i
h0|Y †

1

|0i h0|Y
2

|0i
one-loop

= hp
1

, q|�⇤ |0i
tree

h
h0|Y †

1

Y
2

|0i+G
(12)

not-soft-sens.

i

(52)

where G(12)

not-soft-sens.

comes from the calculation of the 1-loop Wilson coe�cient in the previous
section.

What we will now show is that the h0|Y †
1

Y
2

|0i term in Eq. (52) reproduces the sum

of the soft limits of G(12),a or G(12),b at leading power, the G
(12)

not-soft-sens.

term reproduces the
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One-loop 

•  IR divergent at 1-loop 
•  Relevant diagrams  
            are gauge and process-dependent 
 

•  Bern and Chalmers (1995): collinear universality proven at 1-loop 
•  Kosower (1999): universality proven to all orders at leading color (large N)  
•  No all-orders proof in QCD (until now) 

Collinear 
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Soft 

nor are the operators in the corresponding product of matrix elements on the right of (33)
gauge invariant. With the way this matrix element has factorized, we can think of each
factored matrix element as having its own quantum number, j 2 {1, . . . , N}, indexing the
collinear sectors, and its own Lagrangian made of fields with this quantum number. Then,
to make the right-hand side of Eq. (33) gauge invariant we must add a Wilson line from a
point at infinity to the origin, namely,

hp
j

; q
aj , . . . , qbj |�j

(0) |0i �! hp
j

; q
aj , . . . , qbj |W †

j

(0,1)�
j

(0) |0i (31)

The Wilson line must be 1 in generic-r and the path must be determined.
In order to appreciate the non-triviality of the collinear factorization that we have just

shown, and to determine the path of the Wilson line, we consider an example with a di↵erent
set of polarization vectors. We previously used generic-r where no reference vectors could be
collinear to p

i

for all i; to contrast this, we take all of the reference vectors of the j-collinear
photons to be equal to p

j

, namely

collinear-r : r
aj , . . . , rbj = p

j

(32)

Then the previously-most-enhanced diagrams will be proportional to

p
j

· ✏�
q

p
j

· q =
p
2

[rp
j

]

[qr][qp
j

]

����
r=pj

= 0 (33)

To see where the O�
(g/�)`

�
contributions to the matrix element in (33) went, note that the

reference vectors for the jth sector are now themselves enhanced:

✏�
q

(r = p
j

) =
p
2
qi[r
[qr]

����
r=pj

=
p
2
qi[p

j

[qp
j

]
⇠

p
2
qi[p

j

�
(34)

so any emission in the jth direction that does not vanish will be enhanced!4 Then, for a
single emission of a positive helicity photon (the other helicity is found by conjugating) in
the j direction with r = p

j

, we have

hp1 . . . pN ; q,+|�⇤
1 . . .�N

|0i = + + (35)

=
X

i 6=j

⌘
i

g
p
i

· ✏�
q

p
i

· q hOiLO (. . . p
i

� ⌘
i

q . . .) = g
p
2
X

i 6=j

⌘
i

[p
j

p
i

]

[qp
j

][qp
i

]
hOiLO (. . . p

i

� ⌘
i

q . . .) (36)

4Note that collinear-r polarizations are those that are consistent with SCET power counting. (more?)
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So we see that, if the reference vectors are chosen to not be collinear to any of the
momenta (that is, if [rp

j

], [qr] ⇠ O(1) in (29)), then we have a similar result to the scalar
theory except with the additional four-point vertex:

pj !

q !

· · ·
⇠ O�

g/�
� hOiLO

pj !

q1 !

· · · q2

!

⇠ O�
g2/�2

� hOiLO

for q’s k p
j

and r ��k p
j

, q’s (27)

Now, since self-collinear emissions do not change the scaling of the collinear lines from which
they are emitted, Eq. (30) can be used inductively to show the same collinear factorization
as found in �3 theory, but now with the caveat of the reference-vector choice. That is, for
the generic choice of reference vectors:

generic-r : r
i ��k p

j

8 j () [r
i

p
j

], hp
j

r
i

i ⇠ O(1) 8 j (28)

with j indexing the various collinear directions, we have

X
=

X
⇥
⇣
1 +O(�)

⌘
(29)

where the sums have the same meaning as in the scalar case: the sum on the left means
the sum over all diagrams consistent with the collinear external states, namely all diagrams
in hX|�⇤

1 . . .�N

|0i. The sum on the right means only sum over those diagrams for which
the emissions in the j direction are from a j-collinear scalar, namely, diagrams for which all
emissions are self-collinear. In terms of matrix elements this equation can be written as

hp1 . . . pN ; qa
1

. . . q
bN |�⇤

1 . . .�N

|0i = hp1; qa
1

. . . q
b

1

|�⇤
1 |0i . . . hpN ; qaN . . . q

bN |�N

|0i (30)

(there needs to be a hard scattering coe�cient out front in cases with derivatives, etc.) where
we recall that �⇤

1 . . .�N

is a gauge invariant operator and the collinear photons are labelled
such that q

aj , . . . , qbj k p
j

for each collinear sector, j.
The above statements are only valid with the generic-r reference-vector choice specified

in (31). Indeed, the sum of diagrams on the right of (32) does not satisfy the Ward identity
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x = 
reproducible as the matrix element of a Wilson line, as in Eq. (30). In the Abelian case, the
Wilson line is

Y †
j

(x) = exp

✓
ig

Z 1

0

ds n
j

· A(xµ + s nµ

j

) e�"s

◆
(75)

and the result is

X

perms

k` k2 k1

pj !
· · ·

· · ·
⇠= hk

1

· · · k
`

| Y †
j

(0) |0i (76)

Although the delightfully simple form in Eq. (74) is particular to Abelian gauge theories (it
is indicative of Abelian exponentiation [52]), that multiple soft emissions can be written in
terms of matrix elements of Wilson lines, as in Eq. (76) is also true in the non-Abelian case,
as we discussion in Section 7.

The generalization of Eq. (76) to soft emissions o↵ of multiple lines simply requires
the inclusion of multiple Wilson lines on the right-hand-side. In terms of operator matrix
elements, the general result is

hp
1

· · · p
N

; k
1

· · · k
`

| O |0i ⇠= hp
1

· · · p
N

| O |0i hk
1

· · · k
`

| Y †
1

· · · Y
N

|0i (77)

We will now prove this using only Eq. (76) and a straightforward enumeration of the diagrams
associated with the contractions on the two sides. Because our proof only uses Eq. (76) we
will be able to recycle it for soft-collinear factorization, spinor QED and QCD below.

First, note that both sides of Eq. (77), in the soft limit, consist of a sum of terms with
di↵erent numbers of ni·✏k

ni·k factors for each i. On the left-hand side, each factor comes from the
contraction of a photon with the i-th scalar and on the right-hand side, from a contraction of
a photon with the i-th Wilson line. Thus, let us define the set of integers {`

i

} corresponding
to a particular partitioning of the number of photons connecting to each direction. That
is, `

1

photons connect to the first scalar, `
2

to the second, and so on. It is then clear that
Eq. (77) should hold for each set {`

i

} separately.
For each Feynman diagram, it is easy to read o↵ what {`

i

} is. Let D{`i} be some diagram
with `

i

photons attached to the i-th leg. For example, we might take

D
1,2,2,1,3

⌘

1
2

3

4

5 (78)

If we choose a fiducial diagram D{`i} for each possible set of integers {`
i

} satisfying 0  `
i

 `
and

P
i

`
i

= `, then we can write the matrix element as

hp
1

· · · p
N

; k
1

· · · k
`

| O |0i =
X

{`i}

X

perms of

{k},!{`i}

X

perms

on p

1

· · ·
X

perms

on pN

P⇥D{`i}
⇤

(79)
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Soft gluons see hard particles as classical sources 
Wilson lines 

•  Wilson line picture does not disentangle soft from collinear 
•  Universal soft current conjecture (Catani & Grassini 2000) 

and thus

qµ
J

(0)
µ (q)|M(0)(p1, . . . , pm)〉 =

m
∑

i=1

T i |M
(0)(p1, . . . , pm)〉 = 0 , (11)

where the last equality follows from colour conservation as in Eq. (7). Although the factor-
ization formula (8) is most easily derived by working in a physical gauge, the conservation
of the soft-gluon current implies that Eq. (8) is actually gauge invariant. Any gauge trans-
formation is equivalent to an addition of a longitudinal component to the polarization
vector of the soft gluon through the replacement εµ(q) → εµ(q) + λqµ. Nonetheless the
factorization formula (8) is invariant under this replacement, because of Eq. (11).

Squaring Eq. (8) and summing over the gluon polarizations leads to the well-known
soft-gluon factorization formula at O(g2

S) for the squared amplitude [4]:

|M(0)(q, p1, . . . , pm)|2 # −g2
S µ2ε 2

m
∑

i,j=1

Sij(q) |M
(0)
(i,j)(p1, . . . , pm)|2 , (12)

where the eikonal function Sij(q) can be written in terms of two-particle sub-energies sij =
(pi + pj)2 as follows

Sij(q) =
pi · pj

2(pi · q) (pj · q)
=

sij

siq sjq

. (13)

The colour correlations produced at tree level by the emission of a soft gluon are taken into
account by the square of the colour-correlated tree-amplitude |M(0)

(i,j)|
2 on the right-hand

side. This is given by

|M(0)
(i,j)(p1, . . . , pm)|2 ≡ 〈M(0)(p1, . . . , pm) |T i · T j |M

(0)(p1, . . . , pm)〉 (14)

=
[

M(0)
c1..bi...bj...cm

(p1, . . . , pm)
]∗

T a
bidi

T a
bjdj

M(0)
c1..di...dj...cm

(p1, . . . , pm) .

3 Soft-gluon factorization at one loop

The factorized structure of the soft limit of the QCD amplitudes at tree level can be
generalized to higher loops. The soft limit of the one-loop amplitudes is studied in detail
in Sect. 4. In this section we anticipate and discuss the final results.

Our analysis is consistent with the following factorization formula

〈a |M(q, p1, . . . , pm)〉 # εµ(q) Ja
µ(q, ε) |M(p1, . . . , pm)〉

[

1 + O(g4
S)
]

, (15)

where the symbol ‘# ’ has the same meaning as in Eq. (8). The matrix element on the
right-hand side is the all-loop amplitude in Eq. (1) and the singular dependence on q is
embodied in the (unrenormalized) soft-gluon current Ja

µ(q, ε), which can be expanded in
loop contributions, i.e. in powers of g2

S:

Ja
µ(q, ε) = gS µε

[

Ja (0)
µ (q) + g2

S µ2εJa (1)
µ (q, ε) + . . .

]

. (16)

5

Computed in dim reg at 1-loop (Catani & Grassini 2000) 
q

i

k

j

i

j

k

q
i

j

q
l

i

j

i

k

j

k+q

-k
q

(a) (b) (c)

(d) (e)

+ +

- J(0)(q)

Figure 4: Feynman diagrams that depend on two or three different hard momenta.

diagram (a) exactly cancels the diagrams (c) and (e). In conclusion, the total contribution
to the one-loop current from class (B) simply amounts to computing the diagram (b),
which is non-abelian, and the non-abelian part of the diagram (a), which is obtained by
the replacement T b

j T b
i T a

i → ifbacT b
j T c

i (b is the colour index of the virtual gluon) in its
overall colour factor.

The calculation of the diagrams in Fig. 4 (a) and (b) is quite simple (see below). Then
we have to add the diagrams of class (A) (Fig. 3). An argument similar to that in Eqs. (41)
and (42) can be used to show that the abelian parts of these diagrams cancel††. Thus, only
their non-abelian part has to be evaluated. Although straightforward, this calculation is
quite cumbersome, in particular because it has to be carried out in the axial gauge n·A = 0.
This cumbersome calculation can be short-circuited by exploiting gauge invariance.

We first recall that the non-vanishing contributions from class (B) depend on the mo-
menta and charges of (at most) two hard partons. Since the diagrams of class (A) involve
interactions with a single hard line, we can split the one-loop soft current in two terms,
J1P and J2P , that respectively denote the contributions that depend on one and two hard
momenta:

Ja(1)
µ (q, ε) = Ja(1)

µ;1P (q, ε) + Ja(1)
µ;2P (q, ε) . (43)

All the diagrams of class (A) are included in J1P . Those of class (B) contribute to J2P

and (because of possible cancellations in the dependence of one hard momentum) to J1P .
We shall explicitly compute J2P and show that it is gauge-invariant. Thus J1P has to be
gauge invariant as well, that is, it cannot depend on the gauge vector nν . Power counting
and the fact that the one-loop current is non-abelian are then sufficient to determine J1P ,

††More precisely, the abelian diagrams in Figs. 3 (a) and (b) are cancelled by the abelian part of the
diagram in Fig. 3 (c).
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•  Soft current computed in dim reg at 2-loop (Duhr & Gehrmann 2013, Zhu & Li  2013) 
•  Required for NNLO subtractions and automation 

•  No operator definition of J 

4.2 Calculation of the one-loop current

We now proceed to the explicit calculation of the one-loop soft current J
(1). Using the

eikonal approximation, we have to evaluate the Feynman diagrams of the kernel K
(1) and

to subtract those corresponding to the second term on the right-hand side of Eq. (40). We
divide the diagrams in two classes: (A) the diagrams that involve interactions with a single
hard line (Fig. 3), and (B) all the remaining diagrams (Fig. 4).

q
i

j

q
i

j

q
i

j

q

i

j

q

i

j

i

j

(a) (b) (c)

(d) (e) (f)

+ +

+ - J(0)(q)

Figure 3: Feynman diagrams that depend on a single hard momentum.

We first consider class (B). The diagrams (a), (b), (c) and (d) in Fig. 4 come from the
kernel K

(1), while Fig. 4 (e) represents the corresponding subtractions. We see that within
this class there are diagrams that involve interactions between three different external lines
i, j and l. These diagrams cancel. Indeed, the diagram in Fig. 4 (d) is exactly cancelled by
that (e)-contribution in which q is emitted by the line l (the sum over the emissions of q is
included in the factor J

(0)(q)). Thus the only non-vanishing terms coming from class (B) are
those that involve interactions between two external lines, namely the diagrams (a), (b), (c)
and the corresponding subtractions in (e). The diagrams (a), (c) and the subtractions in
(e) are very similar: they can be combined in a simple way, because they only differ by the
momentum and colour flow along the hard line i. The different factors coming from the
line i in the diagrams (c) and (e) give

+T a
i T b

i

1

piq + i0

1

pi(k + q) + i0
− T a

i T b
i

1

piq + i0

1

pik + i0
, (41)

while the corresponding factor from the diagram (a) is

+T b
i T a

i

1

pik + i0

1

pi(k + q) + i0
. (42)

Decomposing the colour factor in Eq. (42) in its non-abelian and abelian components,
T b

i T a
i = ifbacT c

i +T a
i T b

i , and adding Eq. (41), we see that the abelian component T a
i T b

i of the
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•  all orders universality unproven (until now) 



Approach 4: Soft-Collinear Effective Theory 
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•  Assigns scaling behavior to fields 
•  Expand Lagrangian to leading power 

out. Then, the following power counting

⇠

n

⇠ �, A

µ

n

, @

µ

c

⇠ (�2

, 1,�) and A

µ

s

, @

µ

s

⇠ �

2 (7)

where @

µ

c

(@µ

s

) means @

µ acting on a collinear (soft) field, produces the SCET quark La-
grangian:

L =
X

p̃,p̃

0

e

i(p̃

0�p̃)·x
⇠̄

n,p̃

0

h
in ·D

s

+
p

2

?
n̄ · p

i
/

n̄

2
⇠

n,p̃

(8)

+
X

p̃,p̃

0
,q̃

e

i(p̃

0�p̃�q̃)·x
⇠̄

n,p̃

0

h
gn · A

n,q̃

+ g

/

A

?
n,q̃

/

p?
n̄ · p +

/

p

0
?

n̄ · p0 g /A
?
n,q̃

� /

p

0
?

n̄ · p0 gn · A
n,q̃

/

p?
n̄ · p

i
/

n̄

2
⇠

n,p̃

(9)

+ 2-gluon + 3-gluon + . . .+O(�) (10)

This Lagrangian may be written in a more succinct form with the introduction of Wilson
lines, label-summation conventions and label-momentum operators [5], however, even with
all of this technology, it is still quite elaborate.

The complication of this Lagrangian is a consequence of the power counting of the fields.
There are many reasons why the power counting of (7) is the most natural choice; it makes the
kinetic terms of the action order 1 and the covariant derivatives power count homogeneously
in �. However, quantum fields are not themselves physical observables and power counting
them in any specific way is unphysical. For example, consider the state created by the
collinear field, Aµ

n

:

(�2

, 1,�) ⇠ k

µ ⇠ h0|Aµ

n

(x) |k, hi = e

ik·x
✏

µ

h

(k) ? k

µ (11)

That is, the field A

µ

n

is power counted as if it is collinear to the four vector kµ despite the
fact that the physical polarizations it carries are transverse to k

µ. To reconcile this with
the power counting of the collinear gluon field, the following choice of polarization vectors is
required:

✏

µ

SCET

(k) =
1

�

k

µ + ✏

µ

physical

(k) (12)

Though not a fundamental issue due to the Ward identity, it should be clear in what sense
the power counting of SCET is unphysical.

Moreover, power counting gauge dependent fields leads to further subtleties since a gauge
transformation can change a fields power counting. This problem is dealt with in SCET by
restricting the set of allowed gauge transformations to those that do not violate that power
counting. That is, the n-collinear Lagrangian is only invariant under the following sets of
gauge transformations:

�
U

c

(x); @µ

U

c

⇠ (�2

, 1,�)
 

and
�
U

s

(x); @µ

U

s

⇠ (�2

,�

2

,�

2)
 

(13)

The U

c

gauge transformations mix the modes indexed by p̃ among each other but do not
change their power counting:

U

c

(x) =
X

q̃

e

�iq̃·x U
q̃

(x) =) ⇠

n,p̃

(x) !
X

q̃

U
p̃�q̃

(x) ⇠
n,q̃

(x) (14)

4

L = i ̄ 6D 

•  Feynman rules messy 
•  Field scaling is gauge-dependent and unphysical 
•  Zero-bin subtraction frustrates true continuum limit 
•  How do we know that modes aren’t missing? 

•   (soft-collinear messenger modes? Glauber modes?) 

•  Clarifies universality 
•  Employs powerful renormalization group methods 
•  Parameterizes power corrections 

Advantages 

Disadvantages 
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A precise statement of factorization: 
June 19, 2014 Matthew Schwartz 

where W i and Y i are incoming Wilson lines (see [FS1]). Note that we only write explicitly
the color and spin indices of the partons which emerge from the hard scattering. There
are many implicit color and spin indices in the states hXj| and hXs|. These colors and
spins are important when computing scattering amplitudes, but are usually summed over in
computing resummed distributions.

11.3 QCD factorization formula

In summary, a general factorization formula in QCD can be written as

M{±} ⇠=
X

I

CI,{±}(Sij)

⇥ · · · hXi|  ̄iWi |0i±hi

tr h0|Y †
i Wi |0i

· · · hXj|AµWj |0i±aj

tr h0| Y†
jWj |0i

· · · hXk|W †
k k |0i±hk

tr h0|W †
kYk |0i

· · ·

⇥hXs| · · · (Y †
i T

i
I)

hili · · · (Y†
jT

j
I)

lj�1

aj lj+1 · · · (T k
I Yk)

lkhk · · · |0i

(206)

where the ± indexes the helicities. The li indices are contracted within the soft Wilson line
matrix element, while the hi and ai indices contract with the colors of the jets.

12 Splitting functions and soft currents

One application of factorization is that it can provide gauge-invariant and regulator-independent
definitions of the collinear-sensitive or soft-sensitive parts of scattering amplitudes. Such def-
initions may be useful in perturbative QCD calculations if they help simplify or clarify the
structure of the infrared divergences. We therefore consider the soft and collinear limits
of our formulas separately, deriving definitions of splitting functions and soft currents and
thereby proving their universality.

12.1 Splitting Functions

Suppose we have a state hX0| = hX0

1

· · ·X0

N ;X
0

s | containing soft and collinear particles and
a matrix element M

0

for producing that state. We want to know how M
0

is modified into
M by the addition of extra collinear particles to the j-collinear sector, turning hX0

j | into
hXj|, while leaving the net momenta in the j sector unmodified at leading power P µ

j
⇠= P 0µ

j .
Let us write the modified matrix element formally as some operator acting on the original
matrix element

M = Sp · M
0

(207)

The distribution of the soft radiation in hX0

s | is completely independent of the splitting. The
only modification from the addition of collinear particles to hX0

j | is in the matrix element
associated with the j-collinear sector.
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soft-collinear double counting by simply not summing over the zero-momentum bin in the
discrete sum over labels. A somewhat simpler formulation of SCET was presented recently
by Freedman and Luke in [56] and connects more directly to the current work, as discussed
in Section 13.

In this paper, we present and prove a factorization formula for amplitudes in gauge
theories, building upon insights from many of the approaches discussed above. All of the
interesting features of this formula can be seen in the simpler case of factorization for matrix
elements of the operator O = 1

(N/2)!
|�|N in scalar QED. There, our formula reads

hX| O |0i ⇠= C(Sij)
hX

1

|�?W
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|0i
h0|Y †
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W
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This formula applies to final states hX| which can be partitioned into N regions of phase
space such that the total momentum P µ

j in each region has an invariant mass which is small
compared to its energy. More explicitly, we demand P 2

j < �2(P 0

j )
2, where P 0

j = Ej is the
energy of the jet, for some number � ⌧ 1 which is used as a power-counting parameter. For
such states, the momentum qµ of any particle has to be either collinear to one of N lightlike
directions, nµ

j , meaning nj · q < �2q0, or soft, meaning q0 < �2P 0

j . Thus we can write for the
final state hX| = hX

1

· · ·XN ;Xs|, where all the particles with momentum collinear to nj are
contained in the jet state hXj| and the particles that are soft are in hXs|. This explains the
states in Eq. (3). The Wilson coe�cient C(Sij) is a function only of the Lorentz-invariant
combinations Sij ⌘ (Pi + Pj)2 ⇠= 2Pi · Pj of jet momenta P µ

j in each direction; it does
not depend at all on the distribution of energy within the jet or on the soft momenta and,
therefore, it does not depend on �. The objects Yj are Wilson lines going from the origin
to infinity in the directions of the jets, and the Wj are Wilson lines in directions tµj only
restricted not to point in a direction close to that of the corresponding jet. We give more
precise definitions of the Wilson lines in Section 2. The symbol ⇠= in Eq. (3) indicates that
any IR-regulated amplitude or IR-safe observable computed with the two sides will agree at
leading power in �.

Eq. (3) implies hard-collinear factorization (Eq. (1)) and hard-soft factorization (Eq. (2))
as special cases. For example, if a two-body final state hX| is modified by adding a soft
photon of momentum qµ, then one can calculate the e↵ect of this extra emission by taking
the ratio of the right-hand side of Eq. (3) with and without the emission. Most of the terms
drop out of the product, leaving
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We will give general operator definitions for the splitting amplitude, Sp(p
1

, · · · pN), and the
soft current, J, and discuss their universality in Section 12 after we present the generalization
of Eq. (3) to QCD in Section 11 (see Eq. (206)).

Eq. (3) was derived at tree-level in [55], a paper we will refer to often and hereafter as
[FS1]. At tree-level, the Wilson coe�cient and the vacuum matrix elements in the denomi-
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•  Two different amplitudes in QCD are equal at leading power in finite kinematic ratios 
•  We prove this rigorously to all orders in perturbation theory pi · pj
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the [?] equations and explicit proofs of collinear universality have appeared at 1-loop [?] and
to all-orders at large N in [?]. The structure of the infrared divergent regions of virtual
momenta have been characterized long ago, starting with Landau’s equations, and progress-
ing through the reduced-diagram pinch-surface picture often associated with Collins, Soper
and Sterman (CSS). Soft-Collinear E↵ective Theory (SCET) elegantly explains factorization
by assigning appropriate scaling behavior to soft and collinear fields. Nevertheless, there is
(to our knownledge) no explicit proof that soft-collinear factorization holds to all orders in
pertubation theory. It is the aim of this paper to provide such a proof.

An ancillary goal of this paper is to simplify the language used to discuss factorization.
To avoid unneccessary complication, all of the fields in our discussion will be fields in QCD
(or in scalar QED or some other gauge theory). All of the virtual momentum integrals will
be over all of Minkowski space, R1,3. Half of the challenge in proving factorization is in
stating precisely what one wants to prove. We therefore provide an explicit equation, both
sides of which can be computed order-by-order in pertubation theory using ordinary QCD
Feynman diagrams.

The factorization formula we derive applies to matrix elements in QCD between initial
states |X ii and final states hXf | that can be separately partitioned into N i and N f regions
of phase space such that the total momentum P µ

j in each region has an invariant mass which
is small compared to its energy. More explicity, we demand P 2

j < �2(P 0

j )
2 for some number

� ⌧ 1 which we use as a power-counting parameter. For such states, the momentum
qµ of any particle has to be either collinear to one of N i or N f lightlike directions, nj,
meaning nj · q < �2q0, or soft, meaning p0 < �2P 0

j . Thus we can write for the final state
hXf | = hX

1

· · ·XNf
;Xf

s |, where all the particles with momentum collinear to nj are contained
in the jet state hXj| and the particles that are soft are in hXs|. Similarly, the initial state
can be written as |Xsi = hXNf+1

· · ·XN ;X i
s|, where N = Ni +Nf . We insist that no initial

state particle be collinear to any final state particle. If a particle is both soft and collinear,
it can be assigned to either state.

With this setup, a precise statement of factorization is that the matrix element Mfi for
scattering |Xii into hXf | is

Mfi
⇠= Ccihj(Sij)

hX
1

| ⇤W
1

|0ih1

c
1

h0|Y †
1

W
1

|0i · · · h0|W
†
N |XNihN cN

h0|W †
NY N |0i

hXf
s |Y †

1

· · ·Y N |X i
sic1···cN (1)

where ⇠= means the two sides are equal up to corrections of order �. The outgoing and
incoming Wilson lines Wj, Yj, W j and Y j are defined in Section ??. If there are gluons in
the initial or final state, additional terms with adjoint Wilson lines, and covariant derivatives
appear (see Section 11.1). The notation Ccihj(Sij) refers to a Wilson coe�cient which is a
vector in color and spin space. The Wilson coe�cient is a function only of the Lorentz-
invariant combinations Sij ⌘ (Pi + Pj)2 ⇠= 2Pi · Pj of jet momenta P µ

j in each direction; it
does not depend at all on the distribution of energy within the jet or on the soft momenta.
The subscripts ci refer to the colors of the scattered particles and hj refer to their helicities.
Since color is conserved, all the ci are contracted, and thus most elements of Ccihj(Sij) are
zero. We use the over-complete color-space basis for simplicity. Explicit examples of the
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12.2 Soft currents

The equivalent of splitting functions for soft radiation are often called soft currents [33].
Extracting their matrix-element definition from the general factorization formula proceeds
in the same way as for collinear splittings.

Suppose we have a state hX0| = hX0

1

· · ·X0

N ;X
0

s | containing soft and collinear particles
and a matrix element M

0

for producing that state. We want to know how M
0

is modified
into M by the addition of extra soft particles hXs|. The modified matrix element can be
formally written as

M = J · M
0

(215)

where J is an operator acting in color space. Isolating the part of the factorization formula
involving soft radiation, it follows that

J =
hXs|Y †

1

· · ·TI · · ·YN |0i
hX0

s |Y †
1

· · ·TI · · ·YN |0i (216)

Here I indexes the color structures of the relevant operators.
J has implicit indices which also act on the color of the particles in hX

1

· · ·XN |. It is
standard to write J as a function of color-charge operators Ta

j which act in color space as the
SU(3) generator in the representation of net color flowing in direction j. This representation
is of course the same as the representation of the Yj Wilson line. When using color-charge
operators, one never needs to perform a color sum, and so there is, trivially, no dependence
of J on the color structure I. That the matrix element for soft emission only depends on
the net color in each collinear sector, and not how that color is distributed, is a nontrivial
consequence of factorization. It was proven to 1-loop by direct computation in [34], and now
we have show that it holds to all orders in gs, for an arbitrarily complicated collinear sector
and any number of hard particles.

In the simplest case, hX0

s | = h0| and hXs| has only one gluon, with momentum q, polar-
ization ✏µ(q) and color a. Then J = ✏µJµ

a . At tree level, J is:

Jµ(0) = gs

mX

j=1

Tj

pµj
pj · q (217)

where Tj is the color-charge operator in the j direction. To be more concrete, if there is
only a quark and anti-quark jet, then

Jµ = Jµ
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The h and h0 color indices act on the jets, hX
1

|  ̄W
1

|0ihhX
1

|W †
2

 |0ih0
.

In dimensional regularization in 4 � 2" dimensions, with outgoing particles only, the
1-loop current is [34]:
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spin and color dependnce of the Wilson coe�cient are given in Section 11.1, and in [?]. A
proof of Eq (??) is the main result of this paper.

As a special case, consider the question of how then matrix element Mfi for the decay
of a vector current into 2 quarks with momentum p

1

and p
2

is modified by the emission of
a soft gluon of momentum qµ. Before the emission, the state is hXf | = hp

1

; p
2

| and after the
emission it is hXf 0 | = hp

1

; p
2

; q|. There is only one color contraction between two quarks,
thus the color sum is trivial. Then Eq (1) implies

|Mf 0ii ⇠= Ja
µ |Mfii (2)

where the soft current is identified as
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h✏µ(q); a|Y †
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with a is the color of the emitted gluon, and the hard matrix element is
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Both of these objects are infrared finite and can be computed order-by-order in perturba-
tion theory. The soft current is to be viewed as an operator in color space acting on the
hard matrix element. It was computed at 1-loop in [?] and at 2-loops in [?, ?] in dimen-
sional regularization. Eqs. (3) and (4) provide gauge-independent and regulator-independent
definitions, valid to all orders in pertubation theory. The general formula, Eq. (1) then es-
tablishes soft factorization in this case to all orders. It is also easy to see that in certain
situations, such as with 4 or more colored particles, there soft current is not universal: it
can depend on the color structure I. More details are discussed in Section ??.

The spin and color sum in the factorization formula is in some sense a distraction from
the essential physical content of soft-collinear factorization. Thus, for most of this paper
we concentrate on the simpler example of operator matrix elements into final states hX| =
hX

1

· · ·XN ;Xs| in scalar QED. We consider the local operator O(x) =
|�(x)|N
(N/2)!2

. Then soft-

collinear factorization takes the slightly simpler form
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At tree-level, the Wilson coe�cient and the vacuum matrix elements in the denominators of
this equation are all 1. Thus, at tree-level, the factorization formula reduces to
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which was derived and proven in Ref [1], hereafter referred to as [FS1].
The two di↵erences between Eqs. (6) and (5) represent important physical e↵ects. The

first, the nontrivial Wilson coe�cient represents the ability of the factorized expression to
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situations, such as with 4 or more colored particles, there soft current is not universal: it
can depend on the color structure I. More details are discussed in Section ??.

The spin and color sum in the factorization formula is in some sense a distraction from
the essential physical content of soft-collinear factorization. Thus, for most of this paper
we concentrate on the simpler example of operator matrix elements into final states hX| =
hX

1

· · ·XN ;Xs| in scalar QED. We consider the local operator O(x) =
|�(x)|N
(N/2)!2

. Then soft-

collinear factorization takes the slightly simpler form

hX| O |0i ⇠= C(Sij)
hX

1

|�⇤W
1

|0i
h0|Y †

1

W
1

|0i · · · hXN |W †
N� |0i

h0|W †
NYN |0i hXs|Y †

1

· · ·YN |0i (5)

At tree-level, the Wilson coe�cient and the vacuum matrix elements in the denominators of
this equation are all 1. Thus, at tree-level, the factorization formula reduces to

hX| O |0i ⇠= hX
1

|�⇤W
1

|0i · · · hXN |W †
N� |0i hXs|Y †

1

· · ·YN |0i (6)

which was derived and proven in Ref [1], hereafter referred to as [FS1].
The two di↵erences between Eqs. (6) and (5) represent important physical e↵ects. The

first, the nontrivial Wilson coe�cient represents the ability of the factorized expression to

3

•  Gives operator definition of soft current and matrix element 
•  Gauge invariant and regulator independent 

•  Previous results only in Feynman gauge with dimensional regularization 
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•  Generalizes Kosower’s large N proof to finite N 
•  Gauge invariant and regulator independent 
•  Operator definition of splitting functions for any process 
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Connection to SCET 
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hX1| ̄1W1|0i · · · hXm|W †
m m|0ihXs|Y1 · · ·Y †

m|0iLQCD
hX1 · · ·XmXs| ̄1 · · · m|0iLQCD ⇠

•  Give any state in |Xj> the quantum number “j” 
•  Give any state in |Xs> the quantum number “s” 
•  Introduce gluon and quark fields which can create and destroy these states 

Le↵ ⌘ L1 + · · · Lm + Ls

Identical copies of QCD Lagrangian Then 

hX1 · · ·XmXs| ̄1W1Y1 · · ·YmW †
m m|0iLeff

= 

Now a single operator in an effective theory 
•  This formulation is most similar to Luke/Freedman SCET (2011) 
•  Equivalent to label SCET [Bauer et al 2001] and multipole SCET [Beneke et al 2002]  
             at leading power 
•  Provides operator definition of zero-bin subtraction 

For example, with two collinear sectors, the factorization formula becomes

hX
1

X
2

;Xs|  ̄�µ |0i ⇠= C
2

hX
1

X
2

;Xs|  ̄
1

W
1

tr h0|Y †
1

W
1

|0i /Nc

Y †
1

�µY
2

W †
2

 
2

tr h0|W †
2

Y
2

|0i /Nc

|0iL
e↵

(222)
if computed with an e↵ective Lagrangian

L
e↵

= L
soft

+ L
1

+ L
2

(223)

The Wilson coe�cient C
2

depends only on the net momenta P µ
1

and P µ
2

in each sector,
not on the detailed distribution of momenta in hX

1

X
2

;Xs|. Since C
2

depends on the hard-
scattering operator and not the states, it is a legitimate Wilson coe�cient from matching
onto an e↵ective field theory.

It is possible to clean up the e↵ective field theory operator a little. Let us define

bZi ⌘ 1

Nc

tr h0|W †
i Yi |0i (224)

For other color representations, bZi is defined similarly with theWilson lines in the appropriate
representation and Nc replaced by dimension of the representation. The bZi factors are both
UV and IR divergent. They are, however, independent of � and any momenta in the process.
That is, for given UV and IR regulators, they are power series in ↵s. Thus, they can play
the role of a kind of field-strength renormalization for jets. Indeed, it is natural to define jet
fields as

�i ⌘ 1
bZi

W †
i  i (225)

These composite fields are gauge invariant (up to a global rotation associated with the net
color charge of the jet) and are soft insensitive and collinear sensitive only in the i direction.

In terms of the jet fields, Eq. (222) becomes simply

 ̄�µ ⇠= C
2

�
�̄
1

Y †
1

�
�µ

�
Y
2

�
2

�
(226)

which is a valid leading-power matching equation in an e↵ective theory describing dijet-like
states.

In [FS1], the tree-level version of this formulation of SCET (without the vacuum-matrix
element denominators) was shown to be equivalent to that discussed by Freedman and
Luke [56]. However, with the all-loop factorization theorem in hand we learn something
new: we now have an all-orders matrix-element definition of the zero-bin subtraction. In
Freedman and Luke’s approach to SCET, the zero-bin is subtracted o↵ using an ad-hoc
procedure applied on an integral-by-integral basis that essentially comes from mimicking
the procedure of the traditional approach to SCET [57]. In the traditional approach, the
zero-bin subtraction arises naturally from the SCET Lagrangian. It instructs us to apply a
soft subtraction to every single collinear line in each Feynman diagram. This is arguably a
more complicated algorithm than dividing by a single gauge-invariant color-coherent vacuum
matrix element, as in our factorization formula.
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Outline of proof 
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1.  Establish power counting 
2.  Separate soft-sensitive gluons from soft-insensitive ones 
3.  Prove “reduced diagram” structure at leading power in physical gauges 

 
4.  Prove soft collinear decoupling 

5.  Prove gauge-invariant formulation  

element as the sum of a set of reduced diagrams, each of which can be drawn as

hX
1

· · ·XN ;Xs| O |0i
gen. r⇠=

X
J3

S

J1JN

J2

···

···
···

· · ·

···H (68)

These reduced diagrams have the properties:

• All collinear divergences come when virtual gluons in the “jet” subdiagrams, la-
beled Ji, become collinear to the jet direction. That is, there are no collinear
divergences in virtual gluons connecting di↵erent jets.

• All soft divergences come from virtual gluons in the “soft” subdiagram becomeing
soft.

• The solid blue ball in the center is called the “hard” subdiagram. It is infrared
finite. At leading power, it only depends on the net collinear momenta coming in
from each direction and there cannot be external gluons coming out of it. This
property will establish that the Wilson coe�cient in the factorization theorem is
independent of the external state, as is expected in an operator product expansion.

3. Examine factorization gauge, which gives the flexibility needed for an e�cient proof of
soft-collinear decoupling. Although ghosts do not decouple completely, we show that
they only contribute to the hard subdiagram.

4. Using factorization gauge, show that the soft gluons can be disentangled from the non-
soft gluons. This step follows quite naturally from the proof of tree-level disentangling
in [FS1].

5. Show that the factorized reduced diagrams are exactly reproduced by matrix elements
in the factorization formula and augment the result to an arbitrary gauge choice.

As with the 1-loop examples above, we will prove these steps in a more-or-less gauge-
theory independent way, using QCD and scalar QED for examples. In this approach, tech-
nical details specific to QCD, such as color structures, become mostly notational. These are
discussed in Section 11.1.

6 Step 1: Separating soft sensitivities

The first step is to separate the soft-sensitive physics from that which is soft-insensitive. As
in the examples, we define soft-sensitive to mean either that a loop has a power-counting soft-
divergence or that it would have one for kinematic configurations corresponding to � = 0.
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a sprig of thyme. Doing this for each j = 1, . . . , N , we have

hX
1

· · ·XN ;Xs| O |0i
any rs
gen. rc⇠=

J3

S

J1JN

J2

···

···
···

· · ·

···H

any rs
gen. rc⇠=

J3

J1JN

J2

··· H 0 ⇥ hXs|Y †
1

· · ·YN |0i
h0|Y †

1

|0i · · · h0|YN |0i (161)

where we have altered the IR-insensitive core from H to H 0 to display the fact that Eq. (150)
is only true for the IR-sensitive parts of graphs.

10 Step 5: Final factorization steps

Our last step in the factorization proof is to notice that for each collinear sector, the ratio of
the sum on graphs in the collinear blob and the matrix element, h0|Y †

j |0i, is rs independent
at the level of the IR sensitivities. Thus, for each collinear sector, j, we can separately
choose rs = pj, in which case all of the lines in the collinear blob are black and given by the
regular Feynman rules. With all of the collinear lines black, we are back to the discussion
in Section 9.1 and Eq. (130). That is

Jj

··· ⇥ 1

h0|Y †
j |0i

⇠=
IR

hXj|�⇤ |0i
h0|Y †

j |0i

����
rs=pj

(162)

Applying this result to each collinear sector separately, Eq. (161) becomes

hX
1

· · ·XN ;Xs| O |0i ⇠= C
gauge dep

(Q)
hX

1

|�⇤ |0i
h0|Y †

1

|0i

����
gen. rc
rs=p

1

· · · hXN |� |0i
h0|YN |0i

����
gen. rc
rs=pN

hXs|Y †
1

· · ·YN |0i
(163)

where C
gauge dep

(Q) is the sum of all of the IR-insensitive subdiagrams that have been pushed
to the core of the reduced diagram. At this point, it is dependent on the gauge choice.
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(Q) is the sum of all of the IR-insensitive subdiagrams that have been pushed
to the core of the reduced diagram. At this point, it is dependent on the gauge choice.
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the [?] equations and explicit proofs of collinear universality have appeared at 1-loop [?] and
to all-orders at large N in [?]. The structure of the infrared divergent regions of virtual
momenta have been characterized long ago, starting with Landau’s equations, and progress-
ing through the reduced-diagram pinch-surface picture often associated with Collins, Soper
and Sterman (CSS). Soft-Collinear E↵ective Theory (SCET) elegantly explains factorization
by assigning appropriate scaling behavior to soft and collinear fields. Nevertheless, there is
(to our knownledge) no explicit proof that soft-collinear factorization holds to all orders in
pertubation theory. It is the aim of this paper to provide such a proof.

An ancillary goal of this paper is to simplify the language used to discuss factorization.
To avoid unneccessary complication, all of the fields in our discussion will be fields in QCD
(or in scalar QED or some other gauge theory). All of the virtual momentum integrals will
be over all of Minkowski space, R1,3. Half of the challenge in proving factorization is in
stating precisely what one wants to prove. We therefore provide an explicit equation, both
sides of which can be computed order-by-order in pertubation theory using ordinary QCD
Feynman diagrams.

The factorization formula we derive applies to matrix elements in QCD between initial
states |X ii and final states hXf | that can be separately partitioned into N i and N f regions
of phase space such that the total momentum P µ

j in each region has an invariant mass which
is small compared to its energy. More explicity, we demand P 2

j < �2(P 0

j )
2 for some number

� ⌧ 1 which we use as a power-counting parameter. For such states, the momentum
qµ of any particle has to be either collinear to one of N i or N f lightlike directions, nj,
meaning nj · q < �2q0, or soft, meaning p0 < �2P 0

j . Thus we can write for the final state
hXf | = hX

1

· · ·XNf
;Xf

s |, where all the particles with momentum collinear to nj are contained
in the jet state hXj| and the particles that are soft are in hXs|. Similarly, the initial state
can be written as |Xsi = hXNf+1

· · ·XN ;X i
s|, where N = Ni +Nf . We insist that no initial

state particle be collinear to any final state particle. If a particle is both soft and collinear,
it can be assigned to either state.

With this setup, a precise statement of factorization is that the matrix element Mfi for
scattering |Xii into hXf | is

Mfi
⇠= Ccihj(Sij)

hX
1

| ⇤W
1

|0ih1

c
1

h0|Y †
1

W
1

|0i · · · h0|W
†
N |XNihN cN

h0|W †
NY N |0i

hXf
s |Y †

1

· · ·Y N |X i
sic1···cN (1)

where ⇠= means the two sides are equal up to corrections of order �. The outgoing and
incoming Wilson lines Wj, Yj, W j and Y j are defined in Section ??. If there are gluons in
the initial or final state, additional terms with adjoint Wilson lines, and covariant derivatives
appear (see Section 11.1). The notation Ccihj(Sij) refers to a Wilson coe�cient which is a
vector in color and spin space. The Wilson coe�cient is a function only of the Lorentz-
invariant combinations Sij ⌘ (Pi + Pj)2 ⇠= 2Pi · Pj of jet momenta P µ

j in each direction; it
does not depend at all on the distribution of energy within the jet or on the soft momenta.
The subscripts ci refer to the colors of the scattered particles and hj refer to their helicities.
Since color is conserved, all the ci are contracted, and thus most elements of Ccihj(Sij) are
zero. We use the over-complete color-space basis for simplicity. Explicit examples of the

2

Momenta  
unrestricted 



Summary 
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•  Matrix elements of states with only soft and collinear momenta factorize: 

 
•  Generalizes Collins-Soper-Sterman pinch analysis 

•  Works for amplitudes with nonsingular momenta 
•  In addition, soft and collinear modes factorized 

•  Defines and proves factorization of amplitudes 
•  gauge-invariant and regulator-independent definition for Catani-Grassini soft current. 
•  Collinear factorization proven to all orders 
•  Soft-collinear factorization proven to all orders 

•  Easily written with an effective Lagrangian: 
 
 
•  Equivalent to SCET Lagrangian at leading power 
•  Avoids having to fix a gauge 
•  Avoids having to assign scaling behavior to unphysical fields 
•  Operator definition of zero-bin subtraction 

Le↵ ⌘ L1 + · · · Lm + Ls

hX1 · · ·XmXs| ̄1W1Y1 · · ·YmW †
m m|0iLeff

hX1 · · ·XmXs| ̄1 · · · m|0iLQCD ⇠

the [?] equations and explicit proofs of collinear universality have appeared at 1-loop [?] and
to all-orders at large N in [?]. The structure of the infrared divergent regions of virtual
momenta have been characterized long ago, starting with Landau’s equations, and progress-
ing through the reduced-diagram pinch-surface picture often associated with Collins, Soper
and Sterman (CSS). Soft-Collinear E↵ective Theory (SCET) elegantly explains factorization
by assigning appropriate scaling behavior to soft and collinear fields. Nevertheless, there is
(to our knownledge) no explicit proof that soft-collinear factorization holds to all orders in
pertubation theory. It is the aim of this paper to provide such a proof.

An ancillary goal of this paper is to simplify the language used to discuss factorization.
To avoid unneccessary complication, all of the fields in our discussion will be fields in QCD
(or in scalar QED or some other gauge theory). All of the virtual momentum integrals will
be over all of Minkowski space, R1,3. Half of the challenge in proving factorization is in
stating precisely what one wants to prove. We therefore provide an explicit equation, both
sides of which can be computed order-by-order in pertubation theory using ordinary QCD
Feynman diagrams.

The factorization formula we derive applies to matrix elements in QCD between initial
states |X ii and final states hXf | that can be separately partitioned into N i and N f regions
of phase space such that the total momentum P µ

j in each region has an invariant mass which
is small compared to its energy. More explicity, we demand P 2

j < �2(P 0

j )
2 for some number

� ⌧ 1 which we use as a power-counting parameter. For such states, the momentum
qµ of any particle has to be either collinear to one of N i or N f lightlike directions, nj,
meaning nj · q < �2q0, or soft, meaning p0 < �2P 0

j . Thus we can write for the final state
hXf | = hX

1

· · ·XNf
;Xf

s |, where all the particles with momentum collinear to nj are contained
in the jet state hXj| and the particles that are soft are in hXs|. Similarly, the initial state
can be written as |Xsi = hXNf+1

· · ·XN ;X i
s|, where N = Ni +Nf . We insist that no initial

state particle be collinear to any final state particle. If a particle is both soft and collinear,
it can be assigned to either state.

With this setup, a precise statement of factorization is that the matrix element Mfi for
scattering |Xii into hXf | is

Mfi
⇠= Ccihj(Sij)

hX
1
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1

|0ih1

c
1

h0|Y †
1

W
1

|0i · · · h0|W
†
N |XNihN cN

h0|W †
NY N |0i

hXf
s |Y †

1

· · ·Y N |X i
sic1···cN (1)

where ⇠= means the two sides are equal up to corrections of order �. The outgoing and
incoming Wilson lines Wj, Yj, W j and Y j are defined in Section ??. If there are gluons in
the initial or final state, additional terms with adjoint Wilson lines, and covariant derivatives
appear (see Section 11.1). The notation Ccihj(Sij) refers to a Wilson coe�cient which is a
vector in color and spin space. The Wilson coe�cient is a function only of the Lorentz-
invariant combinations Sij ⌘ (Pi + Pj)2 ⇠= 2Pi · Pj of jet momenta P µ

j in each direction; it
does not depend at all on the distribution of energy within the jet or on the soft momenta.
The subscripts ci refer to the colors of the scattered particles and hj refer to their helicities.
Since color is conserved, all the ci are contracted, and thus most elements of Ccihj(Sij) are
zero. We use the over-complete color-space basis for simplicity. Explicit examples of the
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For example, with two collinear sectors, the factorization formula becomes

hX
1

X
2

;Xs|  ̄�µ |0i ⇠= C
2

hX
1

X
2

;Xs|  ̄
1

W
1

tr h0|Y †
1

W
1

|0i /Nc

Y †
1

�µY
2

W †
2

 
2

tr h0|W †
2

Y
2

|0i /Nc

|0iL
e↵

(222)
if computed with an e↵ective Lagrangian

L
e↵

= L
soft

+ L
1

+ L
2

(223)

The Wilson coe�cient C
2

depends only on the net momenta P µ
1

and P µ
2

in each sector,
not on the detailed distribution of momenta in hX

1

X
2

;Xs|. Since C
2

depends on the hard-
scattering operator and not the states, it is a legitimate Wilson coe�cient from matching
onto an e↵ective field theory.

It is possible to clean up the e↵ective field theory operator a little. Let us define

bZi ⌘ 1

Nc

tr h0|W †
i Yi |0i (224)

For other color representations, bZi is defined similarly with theWilson lines in the appropriate
representation and Nc replaced by dimension of the representation. The bZi factors are both
UV and IR divergent. They are, however, independent of � and any momenta in the process.
That is, for given UV and IR regulators, they are power series in ↵s. Thus, they can play
the role of a kind of field-strength renormalization for jets. Indeed, it is natural to define jet
fields as

�i ⌘ 1
bZi

W †
i  i (225)

These composite fields are gauge invariant (up to a global rotation associated with the net
color charge of the jet) and are soft insensitive and collinear sensitive only in the i direction.

In terms of the jet fields, Eq. (222) becomes simply

 ̄�µ ⇠= C
2

�
�̄
1

Y †
1

�
�µ

�
Y
2

�
2

�
(226)

which is a valid leading-power matching equation in an e↵ective theory describing dijet-like
states.

In [FS1], the tree-level version of this formulation of SCET (without the vacuum-matrix
element denominators) was shown to be equivalent to that discussed by Freedman and
Luke [56]. However, with the all-loop factorization theorem in hand we learn something
new: we now have an all-orders matrix-element definition of the zero-bin subtraction. In
Freedman and Luke’s approach to SCET, the zero-bin is subtracted o↵ using an ad-hoc
procedure applied on an integral-by-integral basis that essentially comes from mimicking
the procedure of the traditional approach to SCET [57]. In the traditional approach, the
zero-bin subtraction arises naturally from the SCET Lagrangian. It instructs us to apply a
soft subtraction to every single collinear line in each Feynman diagram. This is arguably a
more complicated algorithm than dividing by a single gauge-invariant color-coherent vacuum
matrix element, as in our factorization formula.
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Figure 1: Scalings, k ⇠ (b,a,c), that could give power-counting IR divergences.

Conjecture. (Power-Counting Finiteness Conjecture) A Feynman integral is infrared
finite if and only if it scales as a positive power of  under all possible rescalings in Eq. (11).

That an infrared-finite Feynman integral scales as a positive power of  for any rescaling
is easy to prove: a convergent integral must have a convergent Riemann sum. The converse,
that scaling implies infrared finiteness, is also quite logical. We are certainly not aware of
any counterexamples. Nor do we know of a rigorous proof. This conjecture is assumed to
hold in practically every factorization proof, and we assume it too. For a discussion of a
slightly stronger version of this conjecture, see page 428 of [59].

A convenient simplification is that it is not necessary to consider all possible values of
a, b, c � 0. In determining the leading power of  with a given scaling, all that matters is
which terms can be dropped with respect to which other terms – any scaling that drops
the same terms gives the same integrand with the same singularities. Between two power-
counting regions that allow two di↵erent terms to be dropped lies a boundary where both
terms must be kept. Because more terms must be kept on the boundary, if a boundary region
is power-counting finite then the regions it bounds must also be power-counting finite. This
simplifies the types of power-counting we need to consider.

In a given Feynman loop diagram, we always have one propagator whose denominator is
k2 (by our choice of momentum routing). Under the rescaling in Eq. (11),

k2 = 2na · nbkakb + k2

? ! a+b 2na · nbkakb + 2c k2

? (12)

So, if a + b > 2c, we may drop kakb in place of k2

?, and if a + b < 2c, k2

? can be dropped
with respect to kakb. We might also have denominators (k � pa)2 for some pµa . If pµa is not

12
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Future directions 
•  Proofs of factorization dramatically simpler 

•  Can forward scattering be understood the same way? 
•  Add Glauber modes to reduced diagrams? 

•  Possible with our off-shell reduced diagrams 
•  Cleaner understanding of BFKL 

•  Leading power derivation, to all orders? 
•  More exclusive observables? 

•  Universality of PDFs? 

•  Practical applications 
•  Jet physics at subleading power? 

•  Resummation of subleading power corrections has never been done 
•  Universal formulas for coefficients of soft divergences (anomalous dimensions)? 
•  Simpler subtraction schemes for NNLO or NNNLO calculations? 

•  We have a factorized expression which agrees in all soft or collinear limits 


